3.408 \(\int \frac{\tan ^6(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=173 \[ \frac{\left (3 a^2+10 a b+15 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 b^{5/2} f}-\frac{(3 a+7 b) \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 b^2 f}+\frac{\tan ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 b f}-\frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{\sqrt{a} f} \]

[Out]

-(ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(Sqrt[a]*f)) + ((3*a^2 + 10*a*b + 15*b^2)*ArcT
anh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*b^(5/2)*f) - ((3*a + 7*b)*Tan[e + f*x]*Sqrt[a +
 b + b*Tan[e + f*x]^2])/(8*b^2*f) + (Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*b*f)

________________________________________________________________________________________

Rubi [A]  time = 0.318719, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {4141, 1975, 479, 582, 523, 217, 206, 377, 203} \[ \frac{\left (3 a^2+10 a b+15 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 b^{5/2} f}-\frac{(3 a+7 b) \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 b^2 f}+\frac{\tan ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 b f}-\frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{\sqrt{a} f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^6/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-(ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(Sqrt[a]*f)) + ((3*a^2 + 10*a*b + 15*b^2)*ArcT
anh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*b^(5/2)*f) - ((3*a + 7*b)*Tan[e + f*x]*Sqrt[a +
 b + b*Tan[e + f*x]^2])/(8*b^2*f) + (Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*b*f)

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 582

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[(f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q
+ 1) + 1)), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^6(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^6}{\left (1+x^2\right ) \sqrt{a+b \left (1+x^2\right )}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^6}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 b f}-\frac{\operatorname{Subst}\left (\int \frac{x^2 \left (3 (a+b)+(3 a+7 b) x^2\right )}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 b f}\\ &=-\frac{(3 a+7 b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac{\tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 b f}+\frac{\operatorname{Subst}\left (\int \frac{(a+b) (3 a+7 b)+\left (3 a^2+10 a b+15 b^2\right ) x^2}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b^2 f}\\ &=-\frac{(3 a+7 b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac{\tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 b f}-\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}+\frac{\left (3 a^2+10 a b+15 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b^2 f}\\ &=-\frac{(3 a+7 b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac{\tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 b f}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac{\left (3 a^2+10 a b+15 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 b^2 f}\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{\sqrt{a} f}+\frac{\left (3 a^2+10 a b+15 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 b^{5/2} f}-\frac{(3 a+7 b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac{\tan ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 b f}\\ \end{align*}

Mathematica [A]  time = 5.21273, size = 230, normalized size = 1.33 \[ -\frac{\sec (e+f x) \sqrt{a \cos (2 e+2 f x)+a+2 b} \left (\frac{8 b^2 \tan ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{-a \sin ^2(e+f x)+a+b}}\right )}{\sqrt{a}}-\frac{\left (3 a^2+10 a b+15 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{b} \sin (e+f x)}{\sqrt{-a \sin ^2(e+f x)+a+b}}\right )}{\sqrt{b}}\right )}{8 \sqrt{2} b^2 f \sqrt{a+b \sec ^2(e+f x)}}-\frac{\tan (e+f x) \sec ^4(e+f x) (a \cos (2 (e+f x))+a+2 b) (3 (a+3 b) \cos (2 (e+f x))+3 a+5 b)}{32 b^2 f \sqrt{a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^6/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-(((8*b^2*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[a] - ((3*a^2 + 10*a*b + 15*b^2)*
ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[b])*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]]*Se
c[e + f*x])/(8*Sqrt[2]*b^2*f*Sqrt[a + b*Sec[e + f*x]^2]) - ((a + 2*b + a*Cos[2*(e + f*x)])*(3*a + 5*b + 3*(a +
 3*b)*Cos[2*(e + f*x)])*Sec[e + f*x]^4*Tan[e + f*x])/(32*b^2*f*Sqrt[a + b*Sec[e + f*x]^2])

________________________________________________________________________________________

Maple [C]  time = 0.504, size = 1993, normalized size = 11.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/8/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/b^2*sin(f*x+e)*(6*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*co
s(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/
2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^
(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/
((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2+20*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)
*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(
1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b)
)^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^
(1/2)+a-b)/(a+b))^(1/2))*a*b+30*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/
2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*c
os(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+
e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b)
)^(1/2))*b^2-3*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(
f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+c
os(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*
b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2-10*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*
cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(
1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b
^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*
a*b-7*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)
/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)
))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4
*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2-16*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e
)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1
/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a
-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*
a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^2-3*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2-9*cos(f*x+e)
^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+3*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+9*co
s(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*
b-9*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2+cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1
/2)*a*b+9*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2+2*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+
b))^(1/2)*b^2-2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2)/(-1+cos(f*x+e))/cos(f*x+e)^5/((b+a*cos(f*x+e)^2)/
cos(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 4.89076, size = 4045, normalized size = 23.38 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/32*(4*sqrt(-a)*b^3*cos(f*x + e)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^
4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b +
7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14
*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)
^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - (3*a^3 + 10*a^2*b + 15*a*b^2)*sqrt(b)*cos(f*x + e)^3*log(((a^2 - 6*a*b
 + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*
sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*(2*a*b^2 - 3*(a^2*b + 3*
a*b^2)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a*b^3*f*cos(f*x + e)^3), -1/
16*(2*sqrt(-a)*b^3*cos(f*x + e)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 -
14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^
2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2
*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 +
 b)/cos(f*x + e)^2)*sin(f*x + e)) - (3*a^3 + 10*a^2*b + 15*a*b^2)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3
 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x
+ e)))*cos(f*x + e)^3 - 2*(2*a*b^2 - 3*(a^2*b + 3*a*b^2)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x +
 e)^2)*sin(f*x + e))/(a*b^3*f*cos(f*x + e)^3), 1/32*(8*sqrt(a)*b^3*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 -
 a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(
(2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e)^3 + (3*a^3
 + 10*a^2*b + 15*a*b^2)*sqrt(b)*cos(f*x + e)^3*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x
 + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*si
n(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*(2*a*b^2 - 3*(a^2*b + 3*a*b^2)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^2
+ b)/cos(f*x + e)^2)*sin(f*x + e))/(a*b^3*f*cos(f*x + e)^3), 1/16*(4*sqrt(a)*b^3*arctan(1/4*(8*a^2*cos(f*x + e
)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos
(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x +
 e)^3 + (3*a^3 + 10*a^2*b + 15*a*b^2)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b
)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)^3 + 2*(2
*a*b^2 - 3*(a^2*b + 3*a*b^2)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a*b^3*
f*cos(f*x + e)^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{6}{\left (e + f x \right )}}{\sqrt{a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**6/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**6/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{6}}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^6/sqrt(b*sec(f*x + e)^2 + a), x)